3 (Sem-6/CBCS) PHY HC 2

In ore the 12202 of darticles in the

PHYSICS

(Honours Core)

Acc. No. Paper: PHY-HC-6026

(Statistical Mechanics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer the following questions: 1×7=7
 - What is the minimum volume of the (a) phase cell in quantum statistics?
 - Write one limitation of Maxwell-(b) Boltzmann statistics.
 - In how many ways, 2 particles can be (c) distributed in 2 energy states according to F-D statistics?
 - (d) A blackened platinum wire, when gradually heated, appears first dull red, then blue and finally white, why?

- Name the statistics, which is used to study the density of electrons in copper at room temperature.
- If n_i are the number of particles in the ith energy state with degeneracy g_i , then B-E statistics can be applied if—

(i)
$$\frac{n_i}{g_i} \ge 1$$

(ii)
$$\frac{n_i}{g_i} \ll 1$$

(iii)
$$\frac{n_i}{g_i^2} \ll 1$$

(iv) None of the above

(Choose the carrect answer)

- (g) Under what condition, quantum statistics approaches to classical statistics?
- Answer the following questions: $2 \times 4 = 8$
 - Define phase space and phase line.
 - The wavelength of maximum emissive power of heat radiation of Sun is 4750A. Find the surface temperature of the Sun.

[Wien's displacement constant = 0.2892 cm-K]

- (d) Write one similarity and one difference between Bose-Einstein and Fermi-Dirac statistics.
- 3. Answer any three questions from the $5 \times 3 = 15$ following:
 - (a) Define microstate and macrostate. Three distinguishable particles, each of which can be in one of the ε , 2ε , 3ε , 4ε energy states, have total energy 6ε . Find all possible number of distributions of all the particles in the energy states. Also find the number of microstates in each 2+3=5case.
 - Write statistical definition of entropy and derive the relation between entropy and thermodynamic probability.
 - Deduce Sackur-Tetrode formula and 4+1=5explain its significance.
 - Write a note on Bose-Einstein condensation.
 - What is Fermi energy? For copper, $n = 8.48 \times 10^{28}$ electrons/ m^3 . Estimate the value of Fermi energy (E_F) in eV.

1+4=5

- 4. Answer any three questions: 10×3=30
 - (a) Derive Maxwell-Boltzmann energy distribution law for on ideal gas.
 - (b) What is radiation pressure? Prove that the diffuse radiation exerts a pressure on the walls of the container, equal to $\frac{1}{3}$ rd of the energy density. 2+8=10
 - (c) Write the differences between photon gas and ideal gas. Starting from B-E statistics distribution law, derive Planck's law. 3+7=10
 - (d) What is electron gas? Derive the expression of energy distribution of free electrons in a metal using Fermi-Dirac statistics. 2+8=10
 - (e) From Planck's law of black-body radiation, derive— 4+6=10
 - (i) Wien's displacement law
 - (ii) Stefan-Boltzmann law

(f) Write short notes on: 5+5=10

(i) White dwarf stars

(ii) Ensemble

