College Library

1 (Sem-4) MAT 3

2025

MATHEMATICS

Paper: MAT0400304

Analytical Geometry)

Full Marks: 60

Time: 21/2 hours

The figures in the margin indicate full marks for the questions.

Answer the following questions: 1×8=8
 তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ দিয়া ঃ

- (a) Find the form of the equation 3x+4y=5 when the origin is shifted to the point (3,-2).
 মূলবিন্দু (3,-2) লৈ স্থানান্তৰ কৰিলে 3x+4y=5 সমীকৰণৰ ৰূপ কি হ'ব উলিওৱা।
- (b) Under what condition the equation $ax^2 + 2hxy + by^2 = 0$ represents a pair of perpendicular straight lines?
 কি চৰ্ত সাপেক্ষে $ax^2 + 2hxy + by^2 = 0$ সমীকৰণে দুডাল পৰস্পৰ লম্ব ৰেখা প্ৰতিনিধিত্ব কৰিব?

- (c) Write true or false (শুদ্ধ নে অশুদ্ধ লিখা):
 The degree of an equation is an invariant under orthogonal transformation.
 লাম্বিক ৰূপান্তৰ সাপেক্ষে এটা সমীকৰণৰ মাত্ৰা অপৰিবৰ্তনীয়।
- Find the nature of the conic represented by polar equation $\frac{1}{r} = 8 + 5\cos\theta$.

ধ্ৰুৰীয় সমীকৰণ $\frac{1}{r} = 8 + 5\cos\theta$ ই নিৰ্দেশ কৰা শাংকৱটো কি হয় উলিওৱা।

The axes are rotated through an angle of 60° without change of origin. The co-ordinates of a point are $\left(4,\sqrt{3}\right)$ in the new system. Find the co-ordinates in the old system.

মূলবিন্দু পৰিৱৰ্ত্তন নকৰাকৈ আক্ষন্ধয়ক 60° কোণত ঘূৰোৱা হ'ল। নতুন অক্ষ সাপেক্ষে এটা বিন্দুৰ স্থানাংক (4,√3)। পুৰণি অক্ষ সাপেক্ষে বিন্দুটোৰ স্থানাংক উলিওৱা।

(f) Write down the equations of the asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ পৰাবৃত্টোৰ অনন্তস্পৰ্শী ৰেখাৰ সমীকৰণ লিখা।

(g) Find the norm of the vector $\overrightarrow{v} = -3\hat{i} + 2\hat{j} + \hat{k}$

 $\overrightarrow{v}=-3\hat{i}+2\hat{j}+\hat{k}$ ভেক্টৰৰ নৰ্ম (norm) উলিওৱা।

(h) Find the volume of the parallelopiped whose adjacent edges are

$$\overrightarrow{u} = 3\hat{i} - 2\hat{j} - 5\hat{k}, \quad \overrightarrow{v} = \hat{i} + 4\hat{j} - 4\hat{k},$$

 $3\hat{j} + 2\hat{k}.$

$$\overrightarrow{u} = 3\hat{i} - 2\hat{j} - 5\hat{k}, \overrightarrow{v} = \hat{i} + 4\hat{j} - 4\hat{k},$$

 $\overrightarrow{w}=3\,\hat{j}+2\hat{k}$ সংলগ্ন বাহুবিশিষ্ট parallelopiped টোৰ ঘনমান উলিওৱা।

- 2. Answer the following questions: 2×6=12 তলৰ দিয়াবোৰৰ প্ৰশ্নসমূহৰ উত্তৰ লিখাঃ
 - (a) Reduce the equation 2x+3y-6=0 in the form lx+my=0 by choice of new origin on the x-axis.
 x-অক্ষত নতুন মূলবিন্দু স্থিৰ কৰি 2x+3y-6=0 সমীকৰণটো lx+my=0 আকাৰলৈ লঘুকৃত কৰা।
 - (b) For what value of k does the equation xy + 5x + ky + 15 = 0 may represent a pair of straight lines.

k = 6 মানৰ বাবে xy + 5x + ky + 15 = 0সমীকৰণটোই দুডাল ৰেখাখণ্ড নিৰ্দেশ কৰিব?

- Find the equation of the diameter of the ellipse $3x^2+4y^2=5$ conjugate to y + 3x = 0.
 - $3x^2+4y^2=5$ উপবৃত্তটোৰ y+3x=0 ব্যাসৰ সংযোজক (conjugate) ব্যাসডালৰ সমীকৰণ উলিওৱা।
- Find the equation of the cone whose vertex is the origin and which passes through the curve of intersection of the plane lx + my + nz = p and the surface $ax^2 + by^2 + cz^2 = 1$.

মূলবিন্দু শীৰ্ষবিন্দুবিশিষ্ট আৰু lx + my + nz = pAnamodera No. No. সমতল আৰু $ax^2 + by^2 + cz^2 = 1$ পৃষ্ঠৰ বক্ৰীয় ছেদিংশৰ মাজেৰে যোৱা শংকুটোৰ সমীকৰণ উলিওৱা।

A force $\overrightarrow{F} = 3\hat{i} - \hat{j} + 2\hat{k}$ lb is applied to a point that moves on a line from P(-1, 1, 2) to Q(3, 0, -2). If the distance is measured in feet, how much work is done?

 $\overrightarrow{F} = 3\hat{i} - \hat{j} + 2\hat{k}$ lb বল প্রয়োগ কৰি এটা বিন্দু P(-1, 1, 2) ৰ পৰা Q(3, 0, -2) লৈ স্থানান্তৰ কৰা হ'ল। দূৰত্বৰ মাপ ফুটত (feet) হ'লে কিমান কাৰ্য্য সম্পাদন কৰা হ'ল উলিওৱা।

- Find the centre and radius of the sphere $x^2 + y^2 + z^2 - 2x - 4y + 8z + 17 = 0$. $x^2 + y^2 + z^2 - 2x - 4y + 8z + 17 = 0$ গোলকটোৰ কেন্দ্ৰবিন্দু আৰু ব্যাসাৰ্দ্ধ উলিওৱা।
- Answer any four parts: 5×4=20 যিকোনো চাৰিটা অংশৰ উত্তৰ কৰা ঃ
 - (a) Prove that a+b and $ab-h^2$ obtained from $ax^2 + 2hxy + by^2 + 2gx + 2fy + c$ remain invariant under transformation of rotation.

প্ৰমাণ কৰা যে. $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 9$ প্রাপ্ত a+b আৰু $ab-h^2$ ৰাশি দুটা ঘূণীয় ৰূপান্তৰ সাপেক্ষে অপৰিবৰ্ত্তনীয় হৈ থাকে।

Prove that the straight lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ will be equidistant from origin if $f^4 - g^4 = c(bf^2 - ag^2).$

প্ৰমাণ কৰা যে. $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ সমীকৰণে প্ৰতিনিধিত্ব কৰা ৰেখা দুডাল মূলবিন্দুৰ পৰা সমদূৰত্বত থাকিব যদিহে

$$f^4 - g^4 = c \Big(bf^2 - ag^2 \Big).$$

If PSP' and OSO' are two perpendicular focal chords of a conic, prove that

$$\frac{1}{PP'} + \frac{1}{QQ'} =$$
a constant.

PSP' আৰু OSO' এটা শাংকৱৰ দুডাল পৰস্পৰ লম্ব

নাভীয় জ্যা হ'লে প্ৰমাণ কৰা যে,
$$\frac{1}{PP'} + \frac{1}{QQ'} =$$
ধ্ৰুৱক

Show that the line lx + my = n is a tangent to the parabola $y^2 = 4ax$ if $ln = am^2$.

> দেখওৱা যে, lx + my = n ৰেখাডাল $y^2 = 4ax$ অতিবত্তৰ স্পৰ্শক হব যদিহে $ln = am^2$.

Find the coordinates of the centre and radius of the circle -

$$x + 2y + 2z = 15$$
,

$$x^2 + y^2 + z^2 - 2y - 4z - 11 = 0.$$

$$x + 2y + 2z = 15$$
,

$$x^2 + y^2 + z^2 - 2y - 4z - 11 = 0$$

বত্তৰ কেন্দ্ৰবিন্দুৰ স্থানাংক আৰু ব্যাসাৰ্দ্ধ উলিওৱা।

Find the equation of the right circular cylinder of radius 5 whose axis passes through (1, 2, 3) and is parallel to

$$\frac{x-4}{2} = \frac{y-3}{-1} = \frac{z-2}{2}.$$

5 ব্যাসাৰ্দ্ধবিশিষ্ট এটা সোঁ বৃত্তাকাৰ চিলিণ্ডাৰৰ সমীকৰণ উলিওৱা যাৰ অক্ষ (1, 2, 3) বিন্দুৰ মাজেৰে যায় আৰু

$$\frac{x-4}{2} = \frac{y-3}{-1} = \frac{z-2}{2}$$
 (ৰখাৰ সমান্তৰাল হয়।

(g) Find the orthogonal projection

 $\overrightarrow{v} = \hat{i} + \hat{j} + \hat{k}$ on $\overrightarrow{b} = 2\hat{i} + 2\hat{j}$

Also find the vector component of orthogonal to \overrightarrow{b} .

Find the orthogonal projection of

$$\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$$
 on $\overrightarrow{b} = 2\overrightarrow{i} + 2\overrightarrow{j}$

Also find the vector component of \overrightarrow{v}

orthogonal to
$$\overrightarrow{b}$$
.

3+2=5

$$\overrightarrow{v} = \hat{i} + \hat{j} + \hat{k}$$
 ভেক্টৰৰ $\overrightarrow{b} = 2\hat{i} + 2\hat{j}$ ৰ ওপৰত

লম্বীয় প্ৰক্ষেপ উলিওৱা। লগতে \overrightarrow{b} ৰ লম্ব হোৱা \overrightarrow{v} ভেক্টৰৰ ভেক্টৰ উপাংশ উলিওৱা।

Show that the lines

$$L_1: x = 2 + t, y = 2 + 3t, z = 3 + t$$

$$L_2: x = 2 + t, y = 3 + 4t, z = 4 + 2t$$

intersect and find the point of intersection. 3+2=5

দেখুওৱা যে

$$L_1: x = 2 + t, y = 2 + 3t, z = 3 + t$$

$$L_2: x = 2 + t, y = 3 + 4t, z = 4 + 2t$$

ৰেখা দুডালে পৰস্পৰক ছেদ কৰে আৰু ছেদবিন্দুৰ স্থানাংক উলিওৱা।

4. Answer any two parts:

10×2=20

যিকোনো দুটা অংশৰ উত্তৰ কৰাঃ

(a) (i) Find the equations of the following when ax + by + c = 0 and bx - ay + d = 0 are considered as axes of x and y respectively

 $\int_{a}^{b} (bx - ay + d)^2 = a^2 + b^2$

II. $(ax + by + c) \cdot (bx - ay + d) = a^2 + b^2$

5

BOSTM OLISON

ax + by + c = 0 আৰু bx - ay + d = 0ৰেখা দুডালক ক্ৰমে x অক্ষ আৰু y অক্ষ হিচাপে লৈ তলৰ সমীকৰণ কেইটা কি হব উলিওৱা —

I. $(bx - ay + d)^2 = a^2 + b^2$

II. $(ax + by + c) \cdot (bx - ay + d) = a^2 + b^2$

(ii) Find the equations of the bisectors of the angles between the lines $ax^2 + 2hxy + by^2 = 0$. 5 $ax^2 + 2hxy + by^2 = 0$ ৰেখাদ্বয়ৰ মাজৰ কোণৰ সমদ্বিখণ্ডকৰ সমীকৰণ উলিওৱা।

(b) (i) Prove that the tangents at the ends of a pair of conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ form a parallelogram of constant area. 5

প্ৰমাণ কৰা যে, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ উপবৃত্তৰ এযোৰ সংযোজক ব্যাসৰ (conjugate diameters) প্ৰান্তবিন্দুত টনা স্পৰ্শকবোৰে এটা সামন্তৰিক সৃষ্টি কৰে যাৰ আয়তন এটা ধ্ৰুৱক হয়।

The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the co-ordinate axes in A, B, C. Prove that the equation to the cone generated by lines drawn from O to meet circle ABC is

$$\left(\frac{b}{c} + \frac{c}{b}\right)yz + \left(\frac{c}{a} + \frac{a}{c}\right)zx + \left(\frac{a}{b} + \frac{b}{a}\right)xy = 0.$$

5

 $x/a + \frac{y}{b} + \frac{z}{c} = 1$ সমতলে অক্ষত্রয়ক A,B,C বিন্দুত ছেদ কৰে। প্রমাণ কৰা যে, মূল বিন্দু O ৰ পৰা ABC বৃত্তলৈ অংকণ কৰা ৰেখা সমূহে উৎপন্ন কৰা শংকুৰ সমীকৰণ

$$\left(\frac{b}{c} + \frac{c}{b}\right)yz + \left(\frac{c}{a} + \frac{a}{c}\right)zx + \left(\frac{a}{b} + \frac{b}{a}\right)xy = 0$$

Welebnend

State the type of the conic and reduce it to canonical form:

$$11x^2 - 4xy + 14y^2 - 58x - 44y + 71 = 0.$$

$$2+8=10$$

তলৰ শাংকৱটোৰ প্ৰকাৰ উল্লেখ কৰা আৰু ইয়াক canonical ৰূপলৈ সৰলীকৃত কৰা ঃ

$$11x^2 - 4xy + 14y^2 - 58x - 44y + 71 = 0$$

(d) A plane passes through a fixed point (p, q, r) and cuts the axes in A.B. C. Show that the locus of the centre of the sphere OABC is

$$\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 2.$$

এখন সমতল এটা নিৰ্দিষ্ট বিন্দু (p, q, r) ৰ মাজেৰে যায় আৰু অক্ষক A, B, C বিন্দৃত ছেদ কৰে। প্ৰমাণ কৰা যে OABC গোলকৰ কেন্দ্ৰৰ সঞ্চাৰপথ হ'ল

$$\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 2$$

Find the cylindrical co-ordinates of a point whose cartesian coordinates are $(1,\sqrt{3},2)$.

> এটা বিন্দুৰ কাৰ্টেজীয় স্থানাংক $(1,\sqrt{3},2)$ হ'লে বিন্দুটোৰ নলীয় স্থানাংক উলিওৱা।

Find the distance between the points whose spherical cocollege Wordinates are

and
$$\left(2, \frac{\pi}{3}, \frac{\pi}{3}\right)$$
. 4

গোলকীয় স্থানাংক বিশিষ্ট বিন্দু দুটাৰ মাজৰ দূৰত্ব উলিওৱা।

Find the angle between a diagonal of a cube and one of it's edge. এটা ঘনকৰ এডাল কৰ্ণ আৰু এটা দাঁতি (edge)ৰ মাজৰ কোণটো উলিওৱা।

(ii) Let
$$\overrightarrow{v} = \langle 2, 3 \rangle$$
, $\hat{e}_1 = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$ and $\hat{e}_2 = \left\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$ Find the scalar components and vector components of \overrightarrow{v} along \hat{e}_1 and \hat{e}_2 .

11

ধৰা হ'ল
$$\overrightarrow{v} = \langle 2, 3 \rangle$$
, $\hat{e}_1 = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$

আৰু $\hat{e}_2 = \left\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$

্ৰি ভেক্টৰৰ \hat{e}_1 আৰু \hat{e}_2 ৰ দিশত ভেক্টৰ উপাংশ

Find the vector equation of a line in 3-space that passes through the points P_1 (2, 4, -1) and P_2 (5, 0, 7).

 $P_1(2,4,-1)$ আৰু $P_2(5,0,7)$ বিন্দুৰ মাজেৰে যোৱা ৰেখাডালৰ 3-space ত ভেক্টৰ সমীকৰণ উলিওৱা।