2025

MATHEMATICS

Paper: MAT0400104

(Real Analysis)

Full Marks: 60

Time: 21/2 hours

The figures in the margin indicate full marks for the questions

Answer either in English or in Assamese

1. Answer the following questions প্ৰেমিণ্ডিই তলৰ প্ৰশ্নসমূহৰ উত্তৰ দিয়া:

(a) Determine the set

$$A = \left\{ x \in \mathbb{R} : \frac{x^2 + 5}{4x + 1} \right\}$$

$$A = \left\{ x \in \mathbb{R} : \frac{x^2 + 5}{4x + 1} < 1 \right\}$$
 সংহতিটো নিৰূপ

কৰা।

- (b) Write the trichotomy property of real numbers.
 বাস্তৱ সংখ্যাৰ ত্ৰিকোট'মি ধৰ্মটো লিখা।
- (c) If $A = \{x \in \mathbb{R} : x^2 5x + 6 < 0\}$, find sup A. $A = \{x \in \mathbb{R} : x^2 5x + 6 < 0\}$ হ'লে sup A নিৰ্ণয় কৰা ।

(Turn Over)

Write the first five terms of the sequence $\{x_n\}$, where $x_n = \frac{1}{n^2 + 2}$.

 $x_n = \frac{1}{n^2 + 2}$ $\lim_{n \to \infty} \lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{n+1} \right).$ 🛵 অনুক্ৰমটোৰ প্ৰথম পাঁচটা ৰাশি লিখা, য'ত

$$x_n = \frac{1}{n^2 + 2}$$

 $\lim_{n\to\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$ -ৰ মান নিৰ্ণয় কৰা।

- What is a monotone sequence? Give one example. একদিষ্ট অণুক্রম বুলিলে কি বুজা ? এটা উদাহবণ দিয়া।
- State Cauchy's criterion for convergence of a series $\sum x_n$. $\sum x_n$ শ্ৰেণীৰ অভিসাৰিতাৰ বাবে ক'চিৰ নিৰ্ণায়ক বা নিয়মটো লিখা।
- Give an example of a series in R which is convergent, but not absolutely convergent. বাস্তৱ সংখ্যাত এনেকুৱা এটা শ্ৰেণীৰ উদাহৰণ দিয়া, যিটো অভিসাৰী, কিন্তু পৰম অভিসাৰী নহয়।

2. Answer any six of the following questions: $2 \times 6 = 12$

তলৰ প্ৰশ্নসমূহৰ পৰা যি কোনো ছয়টাৰ উত্তৰ দিয়া :

- (a) If $a \in \mathbb{R}$ is such that $0 \le a < \varepsilon$ for every $\varepsilon > 0$, then show that a = 0. যদি $a\in\mathbb{R}$ এনেকুৱা যে সকলো arepsilon>0-ৰ বাবে $0 \le a < \varepsilon$ হয়, তেনেহ'লে দেখুওৱা যে a = 0 হ'ব।
- State the completeness property of \mathbb{R} . Mention one example to demonstrate this property. বাস্তৱ সংখ্যাৰ completeness property টো লিখা। এই ধর্মটো সিদ্ধ হোৱা দেখুৱাবলৈ এটা উদাহৰণ
- Show that for all $a \in \mathbb{R}$, $|a|^2 = a^2$ দেখুওৱা যে সকলো $a \in \mathbb{R}$ -ৰ বাবে $|a|^2 = a^2$
- Let A and B be non-empty subsets of \mathbb{R} such that $a \le b$ for all $a \in A$, $b \in B$. Show that $\sup A \leq \inf B$. যদি A আৰু B বাস্তৱ সংখ্যাৰ দুটা এনেকুৱা অৰিক্ত সংহতি যাতে $a \le b$ হয়, সকলো $a \in A, b \in B$ -ৰ বাবে, তেনেহ'লে দেখুওৱা যে $\sup A \leq \inf B$.
- Show that the sequence $\{1, 2, \dots, n, \dots\}$ does not converge to any $x \in \mathbb{R}$. দেখুওৱা যে {1, 2, ..., n, ...} এই অণুক্রমটো কোনো $x \in \mathbb{R}$ -লৈ অভিসাবী নহয়।

$$\{x_n\}$$
, where $x_n = \sqrt{n^2 + 5n} - n$ তে\ega $\{x_n\}$ অপুক্রমটোর চরম মান নিপ্য করা $\{x_n\}$ অপুক্রমটোর চরম মান নিপ্য করা $\{x_n\}$ তে

(g) Examine the convergence or divergence of the sequence $\left\{1,\frac{1}{2},3,\frac{1}{4},\cdots\right\}$. $\left\{1,\frac{1}{2},3,\frac{1}{4},\cdots\right\}$ এই অণুক্রমটো অভিসাবী নে অপসাবী পৰীক্ষা কৰা।

(h) If a series $\sum_{n} x_n$ is convergent, then show that

$$\lim_{n\to\infty}x_n=0$$

যদি $\sum_n x_n$ শ্ৰেণীটো অভিসাৰী হয়, তেন্তে দেখুওৱা যে $\lim_{n \to \infty} x_n = 0$

(i) Show that the series $\sum_n \sin \frac{1}{n}$ is divergent. দেখুওৱা যে $\sum_n \sin \frac{1}{n}$ শ্ৰেণীটো অপসাৰী।

(j) Use comparison test to show that the series

$$\sum_{n} \frac{1}{n^2 + a_n}$$

where $\{a_n\}$ is a sequence of strictly positive real numbers, is convergent.

তুলনামূলক পৰীক্ষাৰ সহায়ত দেখুওৱা যে

$$\sum_{n} \frac{1}{n^2 + a_n}$$

য'ত $\{a_n\}$ এটা তীক্ষ্ণভাৱে ধনাত্মক বাস্তৱ সংখ্যাৰ অণুক্রম, এই শ্রেণীটো অভিসাৰী হ'ব।

3. Answer any four of the following questions:

5×4=20

তলৰ প্ৰশ্নসমূহৰ পৰা যি কোনো চাৰিটাৰ উত্তৰ দিয়া :

- (a) State and prove the triangle inequality in R.
 বাস্তৱ সংখ্যাৰ ত্ৰিভুজ অসমতাটো উল্লেখ কৰি জীৰ প্ৰমাণ ক্ৰিয়া।
- (b) Solve the following inequality : \vec{y} তলৰ অসমতাটো সমাধান কৰা : |x|+|x+1|<2
- (c) Let A and B be bounded non-empty subsets of ℝ. Prove that ধৰা হ'ল, A আৰু B বাস্তৱ সংখ্যাৰ দুটা পৰিবদ্ধ অৰিক্ত সংহতি। প্ৰমাণ কৰা যে

$$\inf (A + B) = \inf A + \inf B$$

(d) If $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, then show that A Phoekial P $\inf S = 0$

যদি $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, তেনেহ'লে দেখুওৱা যে हैंinf ≲ ॄै0 इ'व । क्षाताम किया ovillage

- Let $\{x_n\}$ and $\{y_n\}$ be real sequences converging to x and y respectively. Show that $\{x_n + y_n\}$ converges to x + y. যদি $\{x_n\}$ আৰু $\{y_n\}$ বাস্তৱ সংখ্যাৰ অণুক্ৰম দুটা যথাক্রমে x আৰু y-লৈ অভিসাৰী হয়, তেনেহ'লে দেখুওৱা যে $\{x_n + y_n\}$ অণুক্রমটো x + y-লৈ অভিসাৰী হ'ব।
- Show that a convergent sequence of real numbers is bounded. দেখুওৱা যে বাস্তৱ সংখ্যাৰ অভিসাৰী অণুক্রম এটা পৰিবদ্ধ হয়।
- Prove that the *p*-series $\sum_{n} \frac{1}{n^p}$ converges for p > 1. প্ৰমাণ কৰা যে $\sum_{n} \frac{1}{n^p}$ এই p-শ্ৰেণীটো p>1-ৰ বাবে অভিসাৰী হয়।

(h) Let $\{x_n\}$ be a sequence of non-zero real numbers. If there exists $r \in \mathbb{R}$ with 0 < r < 1 and $k \in \mathbb{N}$ such that

$$\left|\frac{x_{n+1}}{x_n}\right| \le r \text{ for } n \ge k$$

then prove that the series $\sum x_n$ is absolutely convergent.

r हो भारत x_n r হা প্রেন্থ x_{n+1} r সকলো $n \ge k$ - r সকলো r সকলো r ত্ৰেভিত্ৰ \mathbb{Z} (x_n) অশূন্য বাস্তৱ সংখ্যাৰ এটা অণুক্ৰম। যদি

10×2=20

তলৰ প্ৰশ্নসমূহৰ পৰা যি কোনো দুটাৰ উত্তৰ দিয়া:

- State and prove monotone subsequence theorem of real numbers. বাস্তৱ সংখ্যাৰ একদিষ্ট উপাণুক্ৰম উপপাদ্যটো লিখি প্ৰমাণ কৰা।
- Prove Cauchy's criterion for convergence of real sequence. বাস্তৱ অণুক্ৰমৰ অভিসাৰিতাৰ বাবে ক'চিৰ নিৰ্ণায়ক বা নিয়মটো প্ৰমাণ কৰা।

- (c) Show that every contractive sequence is convergent.
 দেখুওৱা যে প্রতিটো সংকৃচিত অণুক্রম অভিসাৰী হয়।
- (d) Prove that if a series $\sum_{n} x_n$ is absolutely convergent, then any rearrangement $\sum_{n} y_k$ of $\sum_{n} x_n$ is also convergent to the same value.

যদি $\sum_n x_n$ শ্ৰেণীটো পৰম অভিসাৰী হয়, তেনেহ'লে দেখুওৱা যে শ্ৰেণীটোৰ পদসমূহ সালসলনি কৰি গঠন কৰা যি কোনো এটা শ্ৰেণী $\sum_k y_k$ ও একেটা মানলৈকে অভিসাৰী হ'ব।

(e) If the series $\sum_{n} x_{n}$ and $\sum_{n} y_{n}$ are convergent, then show that $\sum_{n} (x_{n} + y_{n})$ is also convergent. Does the similar result hold in case of $\sum_{n} x_{n} y_{n}$? Justify your answer.

যদি $\sum x_n$ আৰু $\sum y_n$ এই শ্ৰেণী দুটা অভিসাৰী হয়, তেনেহ'লে দেখুওৱা যে $\sum (x_n + y_n)$ শ্ৰেণীটোও অভিসাৰী হ'ব। $\sum x_n y_n$ শ্ৰেণীটোৰ বাবেও এই একটা কথাই প্ৰযোজ্য হ'বনে? তোমাৰ উত্তৰৰ সত্যতা প্ৰতিপন্ন কৰা।