Total number of printed pages-7

3 (Sem-4/CBCS) MAT HC 3

2025

MATHEMATICS

(Honours Core)

Paper: MAT-HC-4036

(Ring Theory)

Full Marks: 80

Time: Three hours

6 Skowau Collede Handson

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: $1 \times 10=10$
 - (a) Define characteristic of a ring.
 - (b) State whether the following statement is True or False:"2Z U 3Z is a subring of Z".
 - (c) In the ring of integers, find a positive integer x such that $\langle x \rangle = \langle m \rangle + \langle n \rangle$.

- How many zeros does the equation $x^2 + 3x + 2 = 0$ have in \mathbb{Z}_6 ?
- Find all the maximal ideals in \mathbb{Z}_{\circ} . (e)
- (f) What is the characteristic of $\mathbb{Z}_m \oplus \mathbb{Z}_n$?
- Is the polynomial $x^2 + x + 4$ irreducible (q) over \mathbb{Z}_{11} ?
- Onekler Proc. No. 1919 State whether the following statement is True or False:

 \mathbb{Z}_6 is a subring of \mathbb{Z}_{12} ".

Define prime ideal of a ring.

Given an example of a UFD, which is not a PID.

- 2. Answer the following questions: $2 \times 5 = 10$
 - Show that the centre of a ring is a subring.
 - Prove that the only ideals of a field F are {o} and F itself.
 - Is the mapping $\varphi: \mathbb{Z}_5 \to \mathbb{Z}_{30}$ given by $\phi(x) = 6x$ a ring homomorphism?

- (d) Consider $f(x) = x^3 + 2x + 4$ and q(x) = 3x + 2 in $\mathbb{Z}_5[x]$. Determine the quotient and remainder upon dividing f(x) by g(x).
- (e) Let $f(x) = x^3 + x^2 + x + 1 \in \mathbb{Z}_2[x]$. Write f(x) as a product of irreducible polynomials over \mathbb{Z}_2 .
- Answer any four questions: $5 \times 4 = 20$
 - Let x be a positive integer. Show that $Q\left[\sqrt{x}\right] = \left\{a + b\sqrt{x} : a, b \in Q\right\}$ is a field.
 - (b) Let R be a commutative ring with unity. Show that an ideal A of R is prime if and only if the quotient ring R_A is an integral domain.
 - Define integral domain. Prove that if D is an integral domain, then the polynomial ring D[x] is also an integral 1+4=5domain.
 - Show that every Euclidean domain is a principal ideal domain.

3

melebnenA

- Show that $x^4 + 1$ is irreducible over Q but reducible over \mathbb{R} .
- Let D be a PID and let $p \in D$. Prove that $\langle p \rangle$ is maximal in D if and only if p is irreducible. (e) Let $f(v) = x^3 + x^2 + x + 1 \in \mathbb{Z}_2[x]$ Write
- 4. Answer the following questions: 10×4=40
- (a) Define subring. Prove that a nonempty subset S of a ring R is a subring. If S is closed under College subtraction and multiplication. A Caro No. No. 12

Let a be a positive integer

Let $R = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ and $S = \{(a,b,c) \in R : a+b=c\}$. Prove or disprove that S is a subring of and only if the quotient ring

- Or samob largotti Let R be a finite commutative ring with unity. Prove that every nonzero element of R is either a zero-divisor or a unit.
- (ii) Describe all zero-divisors and units of $\mathbb{Z} \oplus \mathbb{Q} \oplus \mathbb{Z}$.

- (b) (i) Let ϕ be a ring homomorphism from R to S. Then the mapping from $R_{Ker\phi}$ to $\phi(R)$, given by $r + Ker \phi \rightarrow \phi(r)$ is an isomorphism, i.e., $\frac{R}{Ker\phi} \cong \phi(R)$.
 - (ii) Let $S = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$. Show that $\phi: \mathcal{C} \to S$ given $\phi(a) = b$ $\phi(a) = b$ $-b \quad a$ is a ring Dueuy * Wisomorphism.

For a field \mathbb{F} , define and prove the division algorithm for $\mathbb{F}[x]$.

2+8=10

(c) (i) Prove that $\mathbb{Z}[\sqrt{5}]$ is not a unique factorization domain.

5

maid (ii) Show that the ring of Gaussian sintegers $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\}$ is a Euclidean domain with

$$d(a+ib) = a^2 + b^2.$$

Find all units, zero-divisors, idempotents and nilpotent Onekial Phooping elements in $\mathbb{Z}_3 \times \mathbb{Z}_6$.

(ii) Let F be a field of prime characteristic p. Prove that $K = \{ x \in \mathbb{F} : x^p = x \}$ is a sub field of F.

- In $\mathbb{Z}[x]$, the ring of polynomials with integer coefficients, let $I = \{ f(x) \in \mathbb{Z}[x] : f(0) = 0 \}$. Prove For a first $I = \langle x \rangle$. The the
- O1=8+5 (ii) Show that $\mathbb{R}/\langle x^2+1\rangle$ is a field. 3
- (iii) Show that the kernel of a homomorphism is an ideal.

OR

Let F be a field, there show that $\mathbb{F}[x]$ is a principal ideal domain.

(ii) Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}(x)$$

If there is a prime p such that $p \mid a_n, p \mid a_{n-1}, \dots, p \mid a_0 \text{ and } p^2 \mid a_0.$ Then show that f(x) is irreducible over Q.

500