ed live versus seed 3 (Sem-4/CBCS) CHE HC 1

(Honours Core) Paper: CHE-HC-4016

(Inorganic Chemistry-III

edt vd bee Full Marks: 60 h noell W luit

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer the following as directed: 1.
 - What is ambidentate ligand? Give (i) example.
 - The number of heme groups present (ii) per haemoglobin molecule is
 - (a)
 - (b)
 - 6 (c)
 - (d)

(Choose the correct answer)

(iii) Of the five d-orbitals of a Transition metal ion in a square planer complex, the orbital with highest energy will be

(Choose the correct answer)

- (iv) Wilson diseases is caused by the deficiency of
 - (a) Cu
 - (b) Hg
 - (c) Pb
 - (d) Fe

(Choose the correct answer)

- (v) Give an example of Macrocyclic ligand.
- (vi) Which one of the following has the largest atomic radius?
 - (a) Fe
 - (b) Co
 - (c) Cr
 - (12) On

(Choose the correct answer)

- (vii) Carbonyl ligand is also known as π -acid ligand because
- (a) it has filled hybrid orbital
- (b) it has vacant π antibonding orbital
- (c) it has vacant π bonding molecular orbital letter electronic configuration. "Zn,
- S you make (Choose the correct answer)
- 2. Answer the following:

 $2 \times 4 = 8$

- (i) Hydrated copper sulphate is blue in colour but anhydrous copper sulphate is colourless. Explain.
 - (ii) Draw geometrical isomers of the complex $\left[Co\left(NH_3\right)_3Cl_3\right]$. Are the isomers optically active?
- (iii) What is disproportionation reaction?

 Explain with example.
- (iv) Transition elements have high atomization energy. Explain.
- 3. Answer **any three** questions from the following:
 - (i) Describe separation of lanthanides by ion-exchange method.

B04FS 0127

- Explain John-Teller distortion by crystal field theory. What are the conditions of John-Teller distortion is an octahedral complex? How can you predict Z-out and Z-in distribution is an octahedral complex? 2+2+1=5
- (iii) Define Transition element. Write their general electronic configuration. "Zn, Cd and Hg are not considered as true Transition element." Explain why? Write electronic configuration of Cr^{3+} .

following:

What is Latimer diagram ? Latimer diagram for irons is given as

$$FeO_4^{2-} \xrightarrow{+2\cdot20V} Fe^{3+} \xrightarrow{0.77V} Fe^{2+} \xrightarrow{-0.445V} Fe^0$$

Determine the value of $E_{FeO_4^{2-}/Fe^{2+}}^0$

5=4+1 What is disproportionation reaction 2.

(v) What is crystal field stabilization energy? Which one of the given pairs of complexes has largest CFSE?

1+4=5

(a)
$$\left[Cr\left(H_2O\right)_6\right]^{2+}$$
 or $\left[Mn\left(H_2O\right)_6\right]^{2+}$

(b)
$$\left[Fe \left(CN \right)_{6} \right]^{3-}$$
 or $\left[Ru \left(CN \right)_{6} \right]^{3-}$

- 4. Answer any three from the following questions: 10×3=30
 - (a) Explain magnetic property and colour of transition metal complexes with the help of crystal 2+2=4field theory.
 - (b) owner smerism are Discuss about the oxidation states of first row Transition elements.

(c) Write consequences of lanthanide contraction.

- (a) Write applications of Frost (ii) diagram. Tel ent entied
- of the coordination compounds. (b) Write application of potassium diw eb permanganate in quantitative
- (iii) Discuss the synthesis, structures and bonding in $Fe(Co)_5$, $Fe_2(Co)_9$, and $Fe_3(Co)_{12}$. Compare the Γ - and π -bonding ability of Co and No⁺ as 6+4=10ligands.

- (iv) (a) Write IUPAC name of the following compounds: 1×2=2
- Explain [[glgH]ic (i) operty and
- Later to a (ii) $\left[Ag\left(NH_3\right)_2\right]OH$
 - (b) cowrat type of isomerism are exhibited by the following complexes? 1×2=2
 - (i) [Co (NH₃)₅ Br] SO₄
 - $\begin{array}{c} (ii) & \begin{bmatrix} Co \left(NH_3 \right)_5 & NO_2 \end{bmatrix}^{2+} \\ \end{array}$
- (c) Define the terms 'labile' and 'inert' of the coordination compounds.

 Compare these aspects with stability of compounds with appropriate examples. 2+4=6
 - (v) (a) Discuss the function of Haemoglobin and Myoglobin. Explain the terms 'cooperative effect' and 'Bohr effect'.
 - (b) Give an account of Storage and Transport of iron in human body.

- (vi) (a) Write toxic effect of Hg and As in biological system. 2+2=4
 - (b) What important roles from and zinc play in biological system?
 - (c) Write about use of Pt or Au complexes in medicine. 2

2+2=4