Total number of printed pages – 5

3 (Sem-2/CBCS) STA HC1

vllaurium ere a bana A ameyo edi 11 (b)

STATISTICS

(Honours Core)

Paper: STA-HC-2016

(Probability and Probability distribution)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: $1 \times 7 = 7$
 - (a) If X is a Binomial variate with parameters n and p, then write the value of var (X).
 - (b) The mathematical expectation of a random variable is equal to the _____ of that variable. (Fill in the blank)
 - (c) If the mean of a Poisson distribution is 2, what is the variance?
 - (i) 2
 - (ii) 4

Contd.

B03FS 0032

- (iv) 5 (Choose the correct option)
- (d) If the events A and B are mutually disjoint, then $P(A \cup B) =$ ____.

 (Fill in the blank)
- - (f) If x and y are two _____ variables then E(XY) = E(X) E(Y).
 - (g) The sum of two independent gamma variates is also a gamma variate.

 (State true or false)
- 2. Answer the following questions: 2×4=8
 - (a) Define probability mass function and probability density function.
 - (b) Prove that $E(X^2) \ge \{E(X)\}^2$
 - (c) Define mathematical expectation of a random variable.
 - (d) State the examples of Poisson distribution.

3. Answer any three of the following:

5×3=15

- (a) State and prove Bayes theorem.
 - (b) With usual notations, obtain mean and variance of binomial distribution.
- What is the expectation of the number of tosses required?
 - (d) Define cumulant generating function show that mean $= k_1$, $\mu_2 = k_2$, $\mu_3 = k_3$, $\mu_4 = k_4 + 3k_2^2$.
 - Obtain m.g.f of geometric distribution and hence find mean and variance.
 - (f) State the properties of normal distribution.
- 4. Answer any three of the following:

10×3=30

- (a) (i) State and prove the theorem of compound probability. 6
 - (ii) Two urns, the similar in appearance, contain the following numbers of white and black balls.

Urn I: 6 white and 4 black balls Urn II: 5 white and 5 black balls. One urn is selected at random and a ball is drawn from it. It happens to be white. What is the probability bas meem that it has come from the 1st urn?

- variance of binomial distribution (b) Derive the p.m.f. of negative binomial distribution. Obtain moment generating function and cumulant generating function of the distribution and hence find its mean and variance.
 - (c) The p.d.f. of a continuous distribution is $f(x) = y_0(x - x^2)$ $0 \le x \le 1$. Find y_0 and the distribution function.
 - (ii) For a binomial distribution mean = 1.0, variance = 0.8. Determine the distribution. Also find -
 - (i) P(X=0)
 - (ii) P(X>0)
- (d) (i) If X is uniformly distributed with mean 1 and variance $\frac{4}{3}$, find P(X < 0). Also discuss properties of uniform distribution. 3+3=6

- State De Moiver-Laplace and Lindeberg-Levy central limit 2+2=4theorem.
- State and prove addition theorem (e) of mathematical expectation.
 - Define characteristic function and state its important properties. 5
- For any two events A and B, (f)show that $P(A \cap B) \le P(A \cup B) \le P(A) + P(B)$ 4
 - Find mean and variance of hypergeometric distribution. 6