
Total number of printed pages-7

3 (Sem-5/CBCS) PHY HC1

2024

PHYSICS

(Honours Core)

Paper: PHY-HC-5016

(Quantum Mechanics and Applications)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) Eigenvalue of Hamiltonian operator is
 - (i) kinetic energy
 - (ii) potential energy
 - (iii) both (i) and (ii)
 - (iv) total energy
 - (b) Why $\psi = e^x$ is not an acceptable wave function in quantum mechanics?

- (c) What do you mean by space quantisation of an atom?
- (d) The value of $\left[\hat{x}, \frac{\partial}{\partial x}\right]$ is

 (i) 1

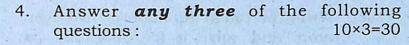
 (ii) -1

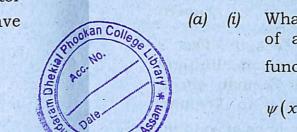
 (iii) ih
- (e) What is the value of spin-orbit interaction energy for the ground state of hydrogen atom?
- (f) When does the probability density of a quantum mechanical oscillator approach that of a classical oscillator?
- (g) Can the Stern-Gerlach experiment be performed with ions instead of neutral atoms?
- 2. Answer the following questions: $2\times4=8$
 - (a) Is the wave function $\psi(x) = e^{ikx}$ an eigenfunction of the kinetic energy operator T? If yes, what is its eigenvalue?

- (b) What is a Gaussian wave packet? Express its wave function.
- (c) The one-dimensional wave function is given by $\psi(x) = \sqrt{a} e^{-ax}$. Find the probability of finding the particle between $x = \frac{1}{a}$ and $x = \frac{2}{a}$.
- (d) Calculate the Lande's g factor for the ${}^2p_3/_2$ state.
- 3. Answer **any three** of the following questions: 5×3=15
 - (a) State the conditions of "acceptability of wave function" in quantum mechanics with explanation.
 - (b) Obtain time-independent Schrödinger wave equation for a free particle in one dimension. Give a physical interpretation of the wave function $\psi(x,t)$.

3

(iv) -i


(c) Find the expectation value of energy when the state of harmonic oscillator is described by the following wave function:


$$\psi(x,t) = \frac{1}{\sqrt{2}} \left[\psi_0(x,t) + \psi_1(x,t) \right]$$

where $\psi_0(x,t)$ and $\psi_1(x,t)$ are the wave functions for the ground state and first excited state respectively.

- (d) State Pauli's exclusion principle. An atomic state is denoted by 3p_2 . Determine the values of L, S and J and mention whether the above state is admissible or not. 2+3=5
- (e) Discuss the significance of zero-point energy with reference to a linear harmonic oscillator. The energy of a linear harmonic oscillator in the third excited state is 0.1 eV. Find the frequency of vibration.

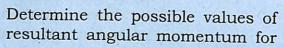
 2+3=5

What is the need for normalization of a wave function? A wave function $\psi(x)$ is given by

$$\psi(x) = A_n \sin \frac{2n\pi x}{L}$$
 in the region $0 \le x \le L$. Find the value of A_n

using normalization condition.

- (ii) Derive the continuity equation from the time-dependent Schrödinger equation of a particle moving in a real potential and give its physical significance. 4+1=5
- (b) A particle of mass m is moving in a one-dimensional potential given by


$$v(x) = 0$$
 for $0 \le x \le L$
 $v(x) = \infty$ for $x < 0$ and $x > L$

Using appropriate boundary conditions, solve the Schrödinger equation and find allowed energy values and normalized wave functions of the particle. Also plot the eigenfunctions corresponding to different eigenvalues. 8+2=10

- (c) Write the radial equation of hydrogen atom and solve it for obtaining its energy eigenvalues. 2+8=10
- (d) What is anomalous Zeeman effect? Discuss the quantum mechanical theory of anomalous Zeeman effect, with special reference to Zeeman pattern for D_1 and D_2 lines of sodium.

2+8=10

(e) (i) Describe and explain LS and JJ couplings. Illustrate them with vector diagram. 2+2+4=8

two electrons having $j_1 = \frac{3}{2}$ and

$$j_2 = \frac{5}{2}$$
.

A beam of electrons enters a uniform magnetic field of flux density $1.2Wb/m^2$ in the z-direction. Find the energy difference between the electrons whose spins are parallel and antiparallel to the field.

- (ii) Write short note on **any one** of the following: 5
 - (i) Paschen-Back effect
 - (ii) Stark effect

7

okan College Okan College