

3 (Sem-3/CBCS) MAT HC 1

2024

MATHEMATICS

(Honours Core)

Paper: MAT-HC-3016

(Theory of Real Functions)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×10=10
 - (a) Does $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$ exist?
 - (b) Define a cluster point of a set $S \subseteq \mathbb{R}$.
 - (c) "If $A \subseteq \mathbb{R}$ and $\phi: A \to \mathbb{R}$ has a limit at a point $a \in \mathbb{R}$, then ϕ is bounded on some neighbourhood of a." Mention the truth or falsity of this statement.

- (d) Give an example of a function which is discontinuous at every point in \mathbb{R} .
- (e) Is a uniformly continuous function always continuous?
- (f) Mention the points of discontinuity of the greatest integer function f(x) = [x].
- (g) Is a function continuous at a point always differentiable at that point?

HEC. NO.

* Magaon :

- (h) State Darboux's theorem.
- (i) Write Taylor's series for a function f, defined on an interval I, about a point $a \in I$ when f has all orders of derivatives at a.
- (j) Write the fourth term in the power series expansion of cosx.
- 2. Answer the following questions: $2 \times 5 = 10$
 - (a) Show that $\lim_{x\to a} x^3 = a^3$ by using the $\varepsilon \delta$ definition of limit.

- (b) Prove that a constant function is continuous everywhere.
- (c) Applying sequential criterion for limit establish that $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right) = 0$.
- (d) Find the points of discontinuity of the function $f(x) = \frac{(x-3)(x^2+1)}{(x+2)(x-4)}$.
- (e) Evaluate the limit $\lim_{x\to\infty} \frac{\sqrt{x}-x}{\sqrt{x}+x}$, if it exists.

Answer any four parts of the following: 5×4=20

- (a) If $f: D \to \mathbb{R}$ and a is a cluster point of D, then prove that f can have only one limit at a if the limit exists.
- (b) If $f: I \to \mathbb{R}$, where I = [a, b] be a closed bounded interval, is continuous on I, then prove that f has an absolute maximum and an absolute minimum on I.
- (c) State and prove Bolzano's intermediate value theorem. 1+4=5

- (d) If I is a closed and bounded interval and $f: I \to \mathbb{R}$ is continuous on I, then prove that f is uniformly continuous on I.
- (e) State Rolle's theorem and prove it.
 - (f) Determine whether x = 0 is a point of relative extremum of the function $f(x) = \sin x x$.
- 4. Answer **any four** parts of the following questions: 10×4=40
 - (a) If I = [a, b], $f: I \to \mathbb{R}$ is continuous on I and if f(a) < 0 < f(b) or f(a) > 0 > f(b), then prove that there exists a number $c \in (a, b)$ such that f(c) = 0.
 - (b) (i) If I = [a, b] be a closed bounded interval and $f: I \to \mathbb{R}$ is continuous on I, then show that f is bounded on I.

(ii) Let P(x) be a polynomial function of degree n. Prove that

$$\lim_{x \to a} P_n(x) = P_n(a).$$
 5

- (c) (i) If a function f is uniformly continuous on a bounded subset A of \mathbb{R} , then prove that f is bounded on A.
 - (ii) Show that the function $f(x) = \frac{1}{x}$ is uniformly continuous on $I = [1, \infty)$.
- (d) (i) If K > 0 and the function $f: \mathbb{R} \to \mathbb{R}$ satisfies the condition $|f(x)-f(y)| \le K|x-y|$, for all real numbers x and y, then show that f is continuous at every point $c \in \mathbb{R}$. Further, from it conclude that f(x) = |x| is continuous at every point $c \in \mathbb{R}$.

(ii) Show that the function f defined by

$$f(x) = \frac{e^{1/x} - 1}{e^{1/x} + 1}, \text{ if } x \neq 0$$

$$0 = x^{a}$$
 if $x = 0$ is uniformly continuous on a bounded subset

is discontinuous at x = 0.

- (e) State Caratheodory's theorem and prove it completely. Apply this theorem to show that $f(x) = 2x^3 + 1$ is differentiable at $a \in \mathbb{R}$ and that $f'(a) = 6a^2$. 2+4+4=10
- (f) If $f: I \to \mathbb{R}$ is differentiable on the interval I, then prove that
 - (i) f is increasing iff $f'(x) \ge 0$, $\forall x \in I$.
 - (ii) f is decreasing iff $f'(x) \le 0$, $\forall x \in I$. Hence prove that

$$f(x) = x^3 - \frac{9}{2}x^2 + 6x - 1$$

s decreasing in the interval (1, 2).

- (g) (i) Find the derivative of $f(x) = \sin \sqrt{x} \text{ using the}$ definition of derivative. 4
 - (ii) State and prove Cauchy's Mean Value Theorem. 2+4=6
- (h) (i) Evaluate: $\lim_{x\to 0} \frac{x^2 \sin^2 x}{x^4}$. 5
 - (ii) Prove that $e^{\pi} > \pi^e$. 5

Sondaram Dhek