Total number of printed pages-4

3 (Sem-6/CBCS) BOT HC 2

Acc. No.

2024

BOTANY

(Honours Core)

Paper: BOT-HC-6026

(Plant Biotechnology)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1.	Fill	in the blanks: 1×7=7
10	(a)	discovered totipotency.
	(b)	A single strand of nucleic acid tagged with a radioactive molecule is called a
note and the converse that the converse of the		
	(c)	The element provides a very stable ultra-low temperature environment.

- (d) ____ is a type of hybrid that contains a lambda phage cos sequence.
- (e) A _____ is a collection of DNA fragments that have been cloned into vectors.
- The basic target of _____ is a living cell.
- genes are used to track the physical location of a segment of DNA.
- 2. Answer the following questions very briefly: 2×4=8
 - (a) What are cloning vectors?
 - (b) What is the principle of totipotency?
 - (c) What are the applications of somatic embryogenesis in plant tissue culture?
 - (d) Mention the types and uses of microinjection.
- 3. Answer any three of the following:

5×3=15

(a) What do you mean by colony hybridization? Mention its practical applications.

- (b) Write a note on industrial enzymes.
- (c) Where is linear DNA found? What are the advantages of linear DNA over circular DNA?
- (d) What is the difference between androgenesis and gynogenesis? What do you mean by direct androgenesis?
- (e) Write a note on Ti plasmid.
- Answer **any three** of the following:
 10×3=30
 - (a) Write about various types of reporter genes with their applications.
 - (b) What do you mean by primary and secondary metabolites? How can biotechnological approaches enhance the production of secondary metabolites?
 - (c) Give an account on transgenic crops with improved quality traits.
 - (d) What are restriction enzymes? Mention the specific properties of various types of restriction enzymes, alongwith their importance for recombinant DNA technology.

- (e) Differentiate between genomic DNA and cDNA libraries. Discuss about the construction of genomic library.
- (f) Discuss eleborately various steps involved in plant tissue culture.

