Total number of printed pages-7

3 (Sem-2/CBCS) STA HC 1

2024 umia edi al (6)

STATISTICS - 100 100

(Honours Core) tagel to

(Probability and Probability Distribution)

Paper: STA-HC-2016

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer the following questions as directed : $1 \times 7 = 7$ State the conditions under which
 - (a) If X is a binomial variate with parameter n and p, then write the value of E[X].
 - (b) If A and B are two mutually exclusive events, then $P(A \cup B) = \underline{\hspace{1cm}}$. Streve Imphrequence (Fill in the blank)

- (c) The sum of independent beta variates is also a beta variate. (State True or False)
- (d) In the simultaneous tossing of two perfect coins, the probability of having at least one head is
- (i) $\frac{1}{2}$
 - (ii) $\frac{1}{4}$
 - (iii) $\frac{3}{4}$
 - (iv) 1 (Choose the correct answer)
 - (e) State the conditions under which binomial distribution tends to Poisson distribution.
 - (f) If the mean of a gamma distribution is 3, what is its variance?
 - (g) What is pairwise independent event?

2

- 2. Answer the following questions: 2×4=8
 - (a) Write the probability function of uniform distribution. State its mean.
 - (b) With both P(A) > 0 and P(B) > 0 can two mutually exclusive events A and B be independent? Justify your answer.

(c) For a random variable X, prove that

$$E\left[\frac{1}{X}\right] \ge \frac{1}{E[X]}$$

 $P(A \cap B) \leq P(A \cup B) \leq P(A) + P(B)$

State two properties of normal distribution.

- 3. Answer any three from the following questions: 5×3=15
 - (a) State and prove that Bayes' theorem.
 - (b) Show that for two random variables X and Y

$$E[X+Y] = E[X] + E[Y]$$

provided the expectations exist.

- (c) Find the moment generating function of the normal distribution $N(\mu, \sigma^2)$.
 - (d) Given the joint p.d.f of two random variables X and V

$$f(x, y) = \frac{2}{3}(x+2y)$$
 for $0 < x < 1$
 $0 < y < 1$

Find the marginal densities of X and Y.

- (e) With usual notations, obtain mean and variance of Poisson distribution.
- Answer any three of the following questions: 10×3=30
 - (a) (i) For any two events A and B, show that

$$P(A \cap B) \le P(A \cup B) \le P(A) + P(B)$$

(ii) In a bolt factory machines A, B and C manufacture respectively 25%, 35% and 40%. Of the total of their output 5, 4 and 2 percent are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that manufactured by machines A, B and C?

(b) Derive the p.m.f of negative binomial distribution. Obtain moment generating function and cumulant generating function of the distribution and hence find its mean and variance. 5+5=10

State the uses of log normal w estain distribution. s at X II (i) (9) 2

find the m.g.f of X.

- parameter 1, obtain its m.g. (ii) If X has a uniform distribution in [0, 1], find the p.d.f of $-2\log X$.
 - (iii) Find the mean and variance of hypergeometric distribution. 5.
- If p.d.f of an r.v. X is given by (d) (i) f(x) = 2(1-x) for 0 < x < 1, then show that long and ati 2+1=3

nonaboration
$$E[X^r] = \frac{2}{(r+1)(r+2)}$$

Show that a linear combination of independent normal variate is also a normal variate.

(iii) If the r.v. X assumes the value rwith probability law

$$P(x=r)=q^{r-1}p, r=1,2,3...$$

find the m.g.f of X.

If X is a gamma variate with parameter \(\lambda \), obtain its m.g.f. Deduce that m.g.f of standard 1], find the p.d.f of -2log M.L. 3 gamma variate tends to $\exp\left(\frac{1}{2}t^2\right)$ as $\lambda \to \alpha$. Interpret the result.

2+5=7 (d) (f) If p.d.f of an r.v. X is given by

- -3 de la constante de la const (ii) Define Cauchy distribution. State its one application. 2+1=3
- Define conditional expectation. Prove that E[X] = E[E(X/Y)]7=2+2 (ii) Show that a linear combination of

If joint p.d.f

$$f(x, y) = 8xy$$
 $0 < x < 1$
 $0 < y < 1$

then find

(a)
$$E[Y/X=x]$$

(b)
$$E[XY / X = x]$$

5