3 (Sem-2/CBCS) MAT HC 1

unit interval 2, 1) is uncountable."

SOUTH TO SUM MATHEMATICS

(Honours Core)

Paper: MAT-HC-2016

(Real Analysis)

A converge : 80 Full Marks

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed:

 1×10=10

 enough the following questions as directed:
 - (a) Define, ε -neighbourhood of a point a in \mathbb{R} , where $\varepsilon > 0$.

converges to the number 0.

- (b) Give an example of a set which is not bounded above.
- (c) Write the Archimedean property of \mathbb{R} .

The Removes to the mong in Part ()

- What is the limit of the sequence $\{x_n\}$, where $x_n = \frac{2n}{n^2 + 1}$?
 - "The unit interval [0, 1] is uncountable." CONTAMN (State True or False)
 - (f) For what value of p, the p-series $\sum_{i=1}^{\infty} \frac{1}{n^p}$ converges? WINA INSA!
 - "A convergent sequence of real numbers is a Cauchy sequence."

(State True or False)

The sequence {0, 2, 0, 2, 0, 2, ...} converges to the number 0.

benouth as enouroup gri (State True or False)

- Give an example of a Cauchy sequence (a) Define, r-neighbourhood of M nimt et m
- Let $\{x_n\}$ be a non-zero sequence of real numbers such that $r = \lim_{n \to \infty} \frac{x_{n+1}}{x_n}$

 Σx_n is absolutely convergent if

(i)
$$r < 1$$

- 3.1 Answer any four questife $r \ge 0$ (ii) $5 \times 4 = 20$
- (a) If x > -1, then prove that $(r + a(iii) \ge 1 + nx$
 - (iv) $1 \le r \le 2$

(Choose the correct option) (b) If x and u are any real numbers with

- 2. Answer the following questions: 2×5=10 rational number $r \in O$ such that x < r < y.
 - Determine the set A of $x \in \mathbb{R}$ such that |2x+3|<7.

Define supremum of a non-empty subset S of \mathbb{R} . Write the supremum of the set $S = \{x \in \mathbb{R} : 0 < x < 1\}.$

(d) Show that $\lim_{n \to \infty} n^{2n} = 1$

- Show that the sequence $\left\{\frac{2n-7}{3n+2}\right\}$ is Use comparison test to tbsbnuodrgence
- of the series whose nth term is -(d) Show that the series $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$ is convergent. Show that every absolutely convergent
- (e) State Cauchy's root test for convergence. 4+1=5 true ? Justify.

- 3. Answer any four questions: 5×4=20
 - (a) If x > -1, then prove that $(1+x)^n \ge 1 + nx$ $\forall n \in \mathbb{N}$.
 - (b) If x and y are any real numbers with x < y, then show that there exists a rational number $r \in Q$ such that x < r < y.
 - (c) Prove that a convergent sequence of real numbers is bounded.
 - (d) Show that $\lim_{n\to\infty} \binom{n^{1/n}}{n} = 1$
 - (e) Use comparison test to test convergence of the series whose n^{th} term is $\frac{1}{\sqrt{n+1}}$.
- Show that every absolutely convergent series is convergent. Is the converse true? Justify.

 4+1=5

3 SEMECA CHICAGONA MAICHED / 0 3 5 4

- 4. Answer the following questions: 10×4=40
 - bns (a) For $a, b \in \mathbb{R}$, prove that—

 bns (a) = Y(a) = X is all beogged(b)

$$Z = (z_n) \text{ are } |d| + |a| \ge |d + a|_{al}$$
 (i) unbers

such that
$$x_i \le y_i \le z_i$$
 for all $n \in N$ and that $\lim_{n \to \infty} \left| \frac{d-a}{d-a} \right| \ge \left\| \frac{d-a}{d-a} \right\|_{\text{Dive that}}$

$$01=2+8+3$$

$$\lim_{n \to \infty} (x_n) = \lim_{n \to \infty} (y_n) = \lim_{n \to \infty} (x_n).$$
 Use the result

to show that $\lim_{n \to \infty} \frac{\mathbf{vin}(n)}{n} = 0$

Prove that there exists a positive real number x such that $x^2 = 2$.

- (i) Prove that every monotonically increasing sequence which is bounded above converges to its least upper bound.
- (ii) Show that a sequence in \mathbb{R} can have atmost one limit.

Or

2<e<3.

(i) Show that a bounded sequence of real numbers has a convergent subsequence.

100 kan Collego

(b)

- Ob-4x(ii) State and prove that nested interval theorem. 5
- (c) Suppose that $X = (x_n)$, $Y = (y_n)$ and $Z = (z_n)$ are sequences of real numbers such that $x_n \le y_n \le z_n$ for all $n \in \mathbb{N}$ and that $\lim x_n = \lim z_n$. Then prove that $Y = (y_n)$ is convergent and $\lim (x_n) = \lim (y_n) = \lim (z_n)$. Use the result

 $0 = \left(\frac{n \operatorname{nis}}{n}\right) \min_{m \in n} \text{ that there exists a positive real}$

$$01=8+7$$
 number x such that $x^2=2$.

(b) (i) Prove that every monotonically increasing sequence which is increasing sequence which is $n \in \mathbb{N}$ and above converges to its $n \in \mathbb{N}$ and $n \in \mathbb{N}$ so $n \in \mathbb{N}$

is convergent and $\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$ where 2 < e < 3.

(d) (i) Define absolute convergene of a series in \mathbb{R} .

- (ii) Let Σu_n be any absolutely convergent series in \mathbb{R} . Then show that any rearrangement Σv_n of Σu_n converges to the same value. 7
- (iii) Write one rearrangement of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$.

Or

Discuss convergence of the geometric series $\sum_{n=0}^{\infty} r^n$, where $r \in \mathbb{R}$.

7