3 (Sem-6) STS M1

2020

STATISTICS

(Major)

Paper: 6.1

(Statistical Inference-2)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer from the given options: 1×7=7
 - (a) A confidence interval of confidence coefficient (1~α) is considered best when it has
 - (i) smallest width
 - (ii) largest width
 - (iii) average width
 - (iv) upper and lower limits equidistant from the parameter

- (b) For a certain test, you are given that $\alpha = 0.05$ and $\beta = 0.10$. The power of the test is
 - (i) 0.95
 - (ii) 0.90
 - (iii) 0·05
 - (iv) 0·10
- (c) Area of the critical region depends on
 - (i) number of observations
 - (ii) value of the statistic
 - (iii) size of the Type I error
 - (iv) size of Type II error
- (d) If there are 10 symbols of two types, equal in number, the minimum possible number of runs is
 - (i) 1
 - (ii) 2
 - (iii) 3
 - (iv) 5

- (e) For an unbiased critical region, in testing a simple null hypothesis $H_0: \theta = \theta_0$ (say) against a simple alternative $H_1: \theta = \theta_1$ (say), we have,
 - (i) $1-\beta < \alpha$
 - (ii) $1-\beta \geq \alpha$
 - (iii) $\beta \geq \alpha$
 - (iv) $\beta + \theta_1 < \theta_0 + \alpha$
- (f) Which of the following tests is equivalent / analogous to the χ^2 -test of goodness of fit ?
 - (i) Mann-Whitney U test
 - (ii) Wilcoxon signed rank test
 - (iii) Kolmogorov-Smirnov test
 - (iv) Median test

- The ratio of the likelihood function under H_0 and under the entire parametric space is called
 - (i) probability ratio
 - (ii) sequential probability ratio
 - (iii) likelihood probability ratio
 - (iv) likelihood ratio.
- 2. Answer the following questions: $2\times4=8$
 - (a) Explain simple and composite hypotheses with examples.
 - (b) Define Uniformly Most Powerful (UMP)
 Critical Region and UMP test.
 - (c) What is the difference between sign test and Wilcoxon signed rank test?
 - (d) State the asymptotic properties of Likelihood-ratio test.

- 3. Answer any three of the following questions: 5×3=15
 - (a) Obtain 100 $(1-\alpha)\%$ confidence intervals for the parameters θ and σ^2 of the normal distribution.
 - (b) Discuss the Kolmogorov-Smirnov two-sample test.
 - (c) What do you understand by a Statistical Hypothesis and a Null hypothesis? Describe the errors involved in testing of hypothesis.
 - (d) State and prove the Neyman Pearson lemma.
 - (e) Define Spearman's rank correlation coefficient and Kendall's Tau. Discuss the similarities and differences between them.
- 4. Answer any three of the following questions: 10×3=30

5

(a) (i) Explain level of significance, confidence probability, power of a test and critical region.

(ii) Given the frequency function 5×3=15

$$f(x,\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

For testing the null hypothesis $H_0: \theta = 1$ against $H_1: \theta = 2$, by means of a single observed value x, what would be the size of Type I and Type II errors and the Power functions of the tests for the following critical regions:

(a)
$$0.5 \le x$$
 (b) $1 \le x \le 1.5$

- (b) (i) Write a note on Association and Contingency. 4
- (ii) Explain the Mann Whitney U-test. To which parametric test of significance is it analogous?

(c) What do you mean by Best Critical Region (BCR) ? Using Neyman Pearson lemma, obtain the BCR for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 > \theta_0$ in case of a normal population $N(\theta, \sigma^2)$, where σ^2 is known Also find the power of the test.

ictions and Kendall's Taw. Discuss

2+6+2=10

- (d) What are the advantages of Likelihood ratio test over Neyman Pearson test? Derive the Likelihood ratio test procedure for testing the equality of variance of two univariate normal 2+8=10populations.
- Define a Run. When do we use the One-sample Run test? Describe the Wald-Wolfowitz Runs test stating the underlying assumptions, if any.

1+2+7=10