3 (Sem 4) MAT M1

2015

MATHEMATICS

(Major)

Theory Paper: M-4.1

(Real Analysis)

Full Marks - 80

Time - Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 10=10$
 - (a) Give an example of a set which is not an interval but is a neighbourhood of each of its points.
 - (b) Define an open subset of real numbers.

[Turn over

- (c) The set of limit points of $\{1, 3, 5, 7, 9\}$ is
 - (i) {1, 3}
 - (ii) {7, 9}
 - (iii) {1, 3, 5, 9}
 - (iv) None of these

(Choose the correct answer)

(d) Write whether the following statement is true or false:

A sequence having only one limit point is convergent.

(e) The sequence
$$\left\{\frac{(-1)^n}{n}\right\}$$
 is

- .(i) Convergent
- (ii) Divergent
- (iii) Oscillates finitely
- (iv) Oscillates infinitely
- (Choose the correct answer)

Ornson

If a function f is derivable on a closed interval [a, b] and f'(a) < 0 and f'(b) > 0 then there exists at least one point c between a and b such that f'(c) =_____.

(g) If
$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 3 - x, & 1 \le x \le 2, \text{ then} \end{cases}$$

(I)
$$\lim_{x\to 1^-} f(x) = 1$$

(II)
$$\lim_{x\to 1'} f(x) = 2$$

(III)
$$\lim_{x\to 1} f(x) = 2$$

(IV)
$$\lim_{x\to 1} f(x) = 1$$

Of these statements

- (i) I and III are correct
- (ii) II and IV are correct
- (iii) I and II are correct
- (iv) III alone is correct

(Choose the correct answer)

(i) Evaluate:
$$\lim_{x\to 0} \frac{1-\cos x}{3x^2} = \frac{1-\cos x}{5}$$

The value of 'C' in Lagrange's Mean Value theorem for
$$f(x) = \alpha x^2 + \beta x + \gamma$$
, $\alpha \neq 0$ in [a, b] is given by

(i)
$$\frac{a+b}{2}$$
 (ii) \sqrt{ab}

(iii)
$$\frac{2ab}{a+b}$$
 (iv) $\frac{a}{b} + \frac{b}{a}$

(Choose the correct answer)

2. Answer the following questions:
$$2 \times 5 = 10$$

(a) Show that the following set
$$\{1,-1, 1\frac{1}{2}, -1\frac{1}{2}, 1\frac{1}{3}, -1\frac{1}{3} - \dots \}$$
 is closed

but not open.

(b) Show that the series
$$\sum \frac{(-1)^{n+1}}{n^p}$$
 is absolutely convergent for $p > 1$, but conditionally convergent for $0 .$

(4)

28/3 (Sem 4) MAT M1

- Examine the continuity at x = 0 of the function f(x) = [x] [-x] where [x] denotes the largest integer $\le x$.
- (d) Verify Cauchy's Mean Value theorem for the functions $f(x) = \sin x$ and $g(x) = \cos x$ in $\left[-\frac{\pi}{2}, 0 \right]$.
- (e) Use Taylor's theorem to show that $\cos x \ge 1 \frac{x^2}{2}$ for all $x \ge 0$.
- 3. Answer any four parts:

- $5 \times 4 = 20$
- (a) Prove that a set is closed if and only if its complement is open. 5
- (b) Show that

(i)
$$\lim_{n\to\infty} \left[\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2} \right] = 0$$

(ii)
$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1$$

(c) State the Leibnitz test for convergence of an alternating series. Applying the test

$$1 - \frac{1}{3 \cdot 2^2} + \frac{1}{5 \cdot 3^2} - \frac{1}{7 \cdot 4^2} + \dots$$
 is convergent.

Show that the series is convergent
$$\frac{1\cdot 2}{32\cdot 4^2} + \frac{3\cdot 4}{52\cdot 6^2} + \frac{5\cdot 6}{72\cdot 8^2} + \dots$$

(Use Comparison test)

show that the series

(a) If
$$f(x) = \begin{cases} x \left(e^{\frac{1}{x}} - e^{-\frac{1}{x}} \right) \\ \frac{1}{e^{x}} + e^{-\frac{1}{x}} \end{cases}$$
, $x \neq 0$

show that f is continuous but not derivable at x = 0.

(f) (i) Find the values of a and b in order that
$$\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3} = 1$$
(ii) Figure 1 $\lim_{x \to 0} \left(\frac{1}{x^3} - \frac{1}{x^3}\right)$ 3+2=5

(ii) Evaluate:
$$\lim_{x\to 0} \left(\frac{1}{e^x - 1} - \frac{1}{x} \right) \xrightarrow{3+2=5}$$

- Answer either (a) and (b) or (c) and (d): $5\times2=10$ 4.
 - Prove that every infinite bounded set has a (a) limit point.
 - Can an infinite unbounded set have a limit point? Justify your answer.

- Prove that a convergent sequence of real numbers is bounded. Is the converse true? 3+2=5Justify your answer.
- Show that the sequence $\{S_n\}$ defined by recursion formula $S_1 = \sqrt{2}$, $S_{n+1} = \sqrt{2S_n}$ converges to 2.
- Answer either (a) and (b) or (c) and (d): $5\times2=10$ Prove that a necessary condition for (a)
 - convergence of an infinite series $\sum_{n=1}^{\infty} u_n$ is

$$\lim_{n\to\infty} u_n = 0$$

With an example show that it is not a 3+2=5sufficient condition.

28/3 (Sem 4) MAT M1 (7) [Turn over

(b) State Raabe's test for convergence of a series.

Applying this test, examine the convergence of the series

1+4=5

$$1 + \frac{3}{7}x + \frac{3}{7} \cdot \frac{6}{10}x^2 + \frac{3}{7} \cdot \frac{6}{10} \cdot \frac{9}{13}x^3 + \dots$$

Applying Logarithmic test prove that the series $1 + \frac{1!}{2}x + \frac{2!}{2^2}x^2 + \frac{3!}{4^3}x^3 + \dots$

converges if x < e and diverges if $x \ge e$. 5

Test the convergence of the series

$$1 + \frac{\alpha\beta}{1\cdot\gamma}x + \frac{\alpha(\alpha+1)\beta(\beta+1)}{1\cdot2\cdot\gamma(\gamma+1)}x^2 +$$

$$\frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1\cdot 2\cdot 3\gamma(\gamma+1)(\gamma+2)}x^3+\ldots$$

for all positive values of x; α , β , γ being all positive.

- 6. Answer the following questions:
 - (a) Prove that if a function is continuous in a closed interval, then it is bounded therein.

Or

5

Show that the function f defined by

$$f(x) = \begin{cases} -x, & \text{if } x \text{ is rational} \\ x, & \text{if } x \text{ is irrational} \end{cases}$$

is continuous only at x = 0.

5

(b) Define uniform continuity of a function on an interval.

Prove that every uniformly continuous function on an interval is continuous on that interval.

Justify with an example that the converse is not true. 1+2+2=5

Or

- (c) Show that the function $f(x) = \frac{1}{x^2}$ is uniformly continuous on (a, ∞) , where a > 0 but not uniformly continuous on $(0, \infty)$.
- 7. Answer any two parts:
 - (a) State Rolle's theorem. Using it prove that if f'(x) and g'(x) exist for all $x \in [a, b]$, and $g'(x) \neq 0$ for all $x \in (a, b)$, then for some

c between a and b,
$$\frac{f(c)-f(a)}{g(b)-g(c)}=\frac{f^1(c)}{g^1(c)}.$$

1+4=5

(b) Show that

$$\frac{v-u}{1+v^2} < \tan^{-1} v - \tan^{-1} u < \frac{v-u}{1+u^2}$$
; if $0 < u < v$.

Hence deduce that
$$\frac{\pi}{4} + \frac{3}{25} < \tan^{-1} \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$$
.
 $3+2=5$

- (c) Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a is $\frac{2a}{\sqrt{3}}$.
- (d) Find Maclaurin's power series expansion for the function

$$f(x) = \log(1+x)$$
 for $-1 < x \le 1$.

