2014

CHEMISTRY

(Major)

Paper: 6.1

(Spectroscopy)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer/Choose the correct answer of the following:

 1×7=7
 - (a) A molecule undergoes transition from ground state to an excited state. If the uncertainty in excited state energy level is 10⁻³⁰ J, calculate the lifetime of the molecule in the excited state.
 - (b) What is the lowest vibrational energy in terms of oscillation frequency for a diatomic molecule undergoing simple harmonic motion?
 - (c) Show pictorially the symmetric stretching and symmetric bending vibrations of water molecule.

- (d) The term symbol for a particular atomic state is 3S_1 . What are the values of L and J for this state?
- (e) The photoelectron ejected from a diatomic molecule with an energy of radiation 3.4×10⁻¹⁸ J has the kinetic energy of 1.0×10⁻⁸ J. Calculate the ionization energy per mole for this ejection.
- (f) Which of the following statements is true?
 - (i) Nuclei with odd mass cannot have half integral spins
 - (ii) Nuclei with both p and n even have non-zero spin
 - (iii) Nuclei with both p and n odd have integral spin
 - (g) How many normal modes of vibration does CCl₄ possess?
- 2. Answer the following briefly:

 $2 \times 4 = 8$

(a) Indicate whether C—C stretching vibration in CH₃CCl₃ and symmetric stretching vibration in SO₂ are IR active or not.

- (b) Prove that the mass to charge ratio of an ion in a mass analyzer following a circular path is inversely proportional to the accelerating potential applied.
- (c) How many normal vibration modes are possible for linear ethyne and nonlinear benzene molecules?
- (d) Predict the appearance of the highresolution NMR spectrum of acetaldehyde.
- 3. Answer any three questions of the following:

5×3=15

5

5

5

- (a) What are the factors which determine intensities of spectral lines? Discuss.
- (b) Discuss the principle of obtaining
 Raman spectra of molecules clearly
 defining Stokes' and anti-Stokes'
 radiations and Rayleigh scattering. Why
 are Stokes' lines more intense than
 anti-Stokes' lines?

 4+1=5
- (c) Calculate the moment of inertia of a H₂O molecule around its two-fold axis. The HOH bond angle is 104·5° and the bond length is 95·7 p.m.
- (d) Draw the proton NMR spectra of CH₃CH₂Br and CH₃CHBrCH₃. Indicate the approximate chemical shift, fine structure due to spin-spin coupling and the relative intensities of the lines.

Answer any <i>three</i> questions of the following: 10×3=30				
(a)	(i)	Describe how z-components summation method is used to deduce various allowed values of ${\bf j}$ for $^2P_{3/2}$ and $^2P_{1/2}$.	3 (
	(ii)	Discuss Franck-Condon principle to explain intensities of vibronic transitions due to absorption or emission of a photon of appropriate energy.	5	
	(iii)	How does isotopic effect change the		
		position of microwave band?	2	
(b)	(i)	Write the difference between fluorescence and phosphorescence.	5	
	(ii)	Which of the following systems will show ESR spectrum? Give reasons:	5	
		H, Na ⁺ , °CH ₃ , NO ₂ , H ₂		
(c)	(i)	Discuss the vibration-rotation spectrum of CO.	5	
	(ii)	Describe what is chemical shift taking the example of an alkane.	5	

(d)	(i)	Give a highly schematic diagram of a mass spectrometer.	3		
	(ii)	Mention four methods of ionizing sample molecules entering the ion source unit in a mass spectrometer. Discuss one method in detail.	5		
	(iii)	Explain, with two examples, what is nitrogen rule in mass spectrometry.	2		
(e)	(i)	Explain the fine structure of electronic spectrum of atomic hydrogen.	5		
	(ii)	The wavelength of a radiation absorbed is found to be 500 nm. Express this in terms of wave number, frequency and energy.	3		
	(iii)	A compound with molecular formula C ₇ H ₅ N shows the following prominent IR bands: 3050, 2240, 1600, 1500, 750, 700			
		(all in cm ⁻¹) Predict the structure of the molecule.	2		
(f)	(i)	What are spherical and symmetric rotors?	5		
_900 /1325 (Turn Over					

14A—900**/1325**

(ii) The ratio of I₀/I is 1.98 for the absorption by a compound at a specific wavelength. If the concentration of the sample is 0.9 M and path length is 0.01 m, find the molar extinction coefficient.

2

(iii) Using IR spectra, how will you distinguish between ethanol and ethanal?

3

* * *